Initial experience in small animal tumor imaging with a clinical positron emission tomography/computed tomography scanner using 2-[F-18]fluoro-2-deoxy-D-glucose.
نویسندگان
چکیده
The feasibility of small animal imaging using a clinical positron emission tomography/computed tomography (PET/CT) scanner with [F-18]-fluoro-2-deoxy-D-glucose (FDG) was evaluated. As tumor-bearing small animal models, rabbits with VX-2 liver tumors, rats with mammary tumors on the back, and mice with LS174T human colon tumor xenografts were prepared. Two-dimensional PET, CT, and fused PET/CT images were obtained and reconstructed with a combined PET/CT system using a conventional protocol for humans and dedicated high-resolution mode protocols specialized for each species. Estimated radioactivity concentrations in tumors and normal organs determined noninvasively on FDG-PET/CT were compared with the actual tissue radioactivity levels determined from gamma-counting after vivisection in rats. In addition, recovery-corrected radioactivity concentrations were calculated and evaluated using the tumor/normal organ sizes measured on CT. Tumors in rabbits and rats were clearly visualized by FDG-PET/CT in the dedicated protocols, and images were considered suitable for research purposes. With the aid of thin-slice CT-mapping images, FDG uptake was correctly localized in the viable tumor regions. In mice, increased FDG uptake in tumors with varying activity levels was observed, but detailed anatomical information was not optimally provided from the images, even using specialized protocols. The estimated radioactivity concentrations of tumors and normal organs were close to the actual radioactivity concentrations obtained by gamma-counting (r = 0.97, P < 0.001, the estimated/actual slope: 1) when recovery correction was applied using the sample sizes measured on CT. FDG-PET/CT imaging with a modern clinical scanner was demonstrated to be feasible, of excellent quality, and quite quantitatively accurate for research in rabbits or rats with tumors of appropriate size (>2 cm without recovery correction and >1 cm with recovery correction). Evaluation of FDG uptake within a tumor was possible with the aid of CT images. Dedicated small animal PET/CT scanner would be better suited for evaluating tumor-bearing mice and likely could enhance imaging smaller tumors in rabbits or rats. Although it has limitations, small animal imaging with a clinical PET/CT scanner may be quite adequate for sequential noninvasive imaging in oncology research because the CT is of high resolution, allowing for localization of PET findings and for more precise noninvasive estimation of radioactivity concentration through partial volume corrections.
منابع مشابه
18F-FDG PET/CT-based early treatment response evaluation of nanoparticle-assisted photothermal cancer therapy
Within the field of nanoparticle-assisted photothermal cancer therapy, focus has mostly been on developing novel heat-generating nanoparticles with the right optical and dimensional properties. Comparison and evaluation of their performance in tumor-bearing animals are commonly assessed by changes in tumor volume; however, this is usually a late-occurring event. This study implements 2-deoxy-2-...
متن کاملImaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography
Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and...
متن کاملHigh-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT
Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical...
متن کاملIssues pertaining to PET imaging of liver cancer
Positron emission tomography (PET) imaging using 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) has proven valuable in the diagnosis, staging and restaging for many cancers. However, its application for liver cancer has remained limited owing in part to the relatively high background uptake of the tracer in the liver plus the significant variability of the tumor specific uptake in liver cancer among pa...
متن کاملComparison between 2-(18) F-fluoro-2-deoxy-d-glucose positron emission tomography and contrast-enhanced computed tomography for measuring gross tumor volume in cats with oral squamous cell carcinoma.
Feline oral squamous cell carcinoma is one of the most refractory feline malignancies. Most patients succumb due to failure in local tumor control. 2-(18) F-fluoro-2-deoxy-D-glucose positron emission tomography ((18) F-FDG PET) is increasingly being used for veterinary oncology staging as it highlights areas with higher glucose metabolism. The goal of the current prospective study was to compar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 63 19 شماره
صفحات -
تاریخ انتشار 2003